Oxanine DNA glycosylase activity from Mammalian alkyladenine glycosylase.
نویسندگان
چکیده
Oxanine (Oxa) is a deaminated base lesion derived from guanine in which the N(1)-nitrogen is substituted by oxygen. This work reports the mutagenicity of oxanine as well as oxanine DNA glycosylase (ODG) activities in mammalian systems. Using human DNA polymerase beta, deoxyoxanosine triphosphate is only incorporated opposite cytosine (Cyt). When an oxanine base is in a DNA template, Cyt is efficiently incorporated opposite the template oxanine; however, adenine and thymine are also incorporated opposite Oxa with an efficiency approximately 80% of a Cyt/Oxa (C/O) base pair. Guanine is incorporated opposite Oxa with the least efficiency, 16% compared with cytosine. ODG activity was detected in several mammalian cell extracts. Among the known human DNA glycosylases tested, human alkyladenine glycosylase (AAG) shows ODG activity, whereas hOGG1, hNEIL1, or hNEIL2 did not. ODG activity was detected in spleen cell extracts of wild type age-matched mice, but little activity was observed in that of Aag knock-out mice, confirming that the ODG activity is intrinsic to AAG. Human AAG can excise Oxa from all four Oxa-containing double-stranded base pairs, Cyt/Oxa, Thy/Oxa, Ade/Oxa, and Gua/Oxa, with no preference to base pairing. Surprisingly, AAG can remove Oxa from single-stranded Oxa-containing DNA as well. Indeed, AAG can also remove 1,N(6)-ethenoadenine from single-stranded DNA. This study extends the deaminated base glycosylase activities of AAG to oxanine; thus, AAG is a mammalian enzyme that can act on all three purine deamination bases, hypoxanthine, xanthine, and oxanine.
منابع مشابه
Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.
3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA glycosylase not only for the cytotoxic 3MeA DNA lesion, but also for the mutagenic 1,N6-ethenoadenine (epsilonA) ...
متن کاملAlkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).
Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases,...
متن کاملStructural basis for the inhibition of human alkyladenine DNA by 3,N4-ethenocytosine containing DNA
Citation Lingaraju, Gondichatnahalli M. et al. “Structural Basis for the Inhibition of Human Alkyladenine DNA Glycosylase (AAG) by 3,N4-Ethenocytosine-containing DNA.” Journal of Biological Chemistry 286.15 (2011) : 13205 -13213. © 2011 by American Society for Biochemistry and Molecular Biology. As Published http://dx.doi.org/10.1074/jbc.M110.192435 Publisher American Society for Biochemistry a...
متن کاملHuman alkyladenine DNA glycosylase employs a processive search for DNA damage.
DNA repair proteins conduct a genome-wide search to detect and repair sites of DNA damage wherever they occur. Human alkyladenine DNA glycosylase (AAG) is responsible for recognizing a variety of base lesions, including alkylated and deaminated purines, and initiating their repair via the base excision repair pathway. We have investigated the mechanism by which AAG locates sites of damage using...
متن کاملFrameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase.
Human alkyladenine DNA glycosylase (hAAG) excises alkylated purines, hypoxanthine, and etheno bases from DNA to form abasic (AP) sites. Surprisingly, elevated expression of hAAG increases spontaneous frameshift mutagenesis. By random mutagenesis of eight active site residues, we isolated hAAG-Y127I/H136L double mutant that induces even higher rates of frameshift mutation than does the wild-type...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 37 شماره
صفحات -
تاریخ انتشار 2004